Supervised Process of Un-structured Data Analysis for Knowledge Chaining
نویسندگان
چکیده
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولParallel Dataflow Scheme for Streaming (Un)Structured Data
We propose new techniques for exploiting multi-core architectures in the context of visualization dataflow systems. Recent hardware advancements have greatly increased the level of parallelism available in these architectures, and it is expected that this trend is likely to continue in the future. Existing dataflow systems have a number of limitations: they are written for a standard CPU progra...
متن کاملOn Supervised Human Activity Analysis for Structured Environments
We consider the problem of developing an automated visual solution for detecting human activities within industrial environments. This has been performed using an overhead view. This view was chosen over more conventional oblique views as it does not suffer from occlusion, but still retains powerful cues about the activity of individuals. A simple blob tracker has been used to track the most si...
متن کاملSemantic Web Mining of Un-structured Data: Challenges and Opportunities
The management of unstructured data is acknowledged as one of the most critical unsolved problems in data management and business intelligence fields in current times. The major reason for this unresolved problem is primarily because of the actuality that the methods, systems and related tools that have established themselves so successfully converting structured information into business intel...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia CIRP
سال: 2016
ISSN: 2212-8271
DOI: 10.1016/j.procir.2016.04.123